Feasibility Study and Passive Design of Nearly Zero Energy Building on Rural Houses in Xi’an, China
Since the advent of reforms and opening-up of China, the focus has been on urban development. However, rural development has garnered attention in recent years. This research explores energy performance improvement methods for rural houses in Xi’an, China. It aims to discuss the feasibility of desig...
Gespeichert in:
Veröffentlicht in: | Buildings (Basel) 2022-03, Vol.12 (3), p.341 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Since the advent of reforms and opening-up of China, the focus has been on urban development. However, rural development has garnered attention in recent years. This research explores energy performance improvement methods for rural houses in Xi’an, China. It aims to discuss the feasibility of designing a nearly zero-energy building (nZEB), based on typical residential rural housing in Xi’an, through proposing new construction methods and examining the strategies for the refurbishment of an existing house. Initially, a typical rural house was modelled based on data collected from a field survey and historical documents. Subsequently, suitable passive design strategies were explored in the rural house design both in terms of proposing new construction methods and examining the refurbishment strategies of an existing house. After implementation of the passive design, the annual energy demand was reduced from 112 kWh/m2 to 68 kWh/m2 (new construction) and from 112 kWh/m2 to 85 kWh/m2 (refurbished). Even though the passive design significantly reduced the energy demand of the house, it could not achieve the Chinese nZEB standard. Therefore, a photovoltaic (PV) system and a storage battery were incorporated to meet the standard. Eighty per cent of the south roof area of the newly constructed and refurbished house was installed with a PV system and a storage battery with a capacity of 50 kWh and 52 kWh, respectively. After installation of the proposed renewable energy, the annual energy demand from the house was decreased to 35 kWh/m2 (new construction) and 51 kWh/m2 (refurbished), which both achieved the Chinese nZEB standard (equal to or below 55 kWh/m2). The study shows the effectiveness of the methods used to design the nZEB and can be used to instruct the residents to build the nZEB in rural villages like Xi’an in China. |
---|---|
ISSN: | 2075-5309 2075-5309 |
DOI: | 10.3390/buildings12030341 |