The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN) as Identified by Tandem Affinity Purification (TAP) and Mass Spectrometry

The aryl-hydrocarbon receptor (AHR), a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Toxicology 2013-01, Vol.2013 (2013), p.35-46
Hauptverfasser: Thomas, Russell S., Hwang, Hye Jin, Yang, Longlong, LaPres, John J., Tappenden, Dorothy M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aryl-hydrocarbon receptor (AHR), a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic response to dioxin exposure, a comprehensive understanding of AHR biology remains elusive. AHR-mediated signaling starts in the cytoplasm, where the receptor can be found in a complex with the heat shock protein of 90 kDa (Hsp90) and the immunophilin-like protein, aryl-hydrocarbon receptor-interacting protein (AIP). The role these chaperones and other putative interactors of the AHR play in the toxic response is not known. To more comprehensively define the AHR-protein interaction network (AHR-PIN) and identify other potential pathways involved in the toxic response, a proteomic approach was undertaken. Using tandem affinity purification (TAP) and mass spectrometry we have identified several novel protein interactions with the AHR. These interactions physically link the AHR to proteins involved in the immune and cellular stress responses, gene regulation not mediated directly via the traditional AHR:ARNT heterodimer, and mitochondrial function. This new insight into the AHR signaling network identifies possible secondary signaling pathways involved in xenobiotic-induced toxicity.
ISSN:1687-8191
1687-8205
DOI:10.1155/2013/279829