Decreased resting-state alpha-band activation and functional connectivity after sleep deprivation

Cognitive abilities are impaired by sleep deprivation and can be recovered when sufficient sleep is obtained. Changes in alpha-band oscillations are considered to be closely related to sleep deprivation. In this study, power spectrum, source localization and functional connectivity analyses were use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-01, Vol.11 (1), p.484-484, Article 484
Hauptverfasser: Wu, Jintao, Zhou, Qianxiang, Li, Jiaxuan, Chen, Yang, Shao, Shuyu, Xiao, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cognitive abilities are impaired by sleep deprivation and can be recovered when sufficient sleep is obtained. Changes in alpha-band oscillations are considered to be closely related to sleep deprivation. In this study, power spectrum, source localization and functional connectivity analyses were used to investigate the changes in resting-state alpha-band activity after normal sleep, sleep deprivation and recovery sleep. The results showed that the global alpha power spectrum decreased and source activation was notably reduced in the precuneus, posterior cingulate cortex, cingulate gyrus, and paracentral lobule after sleep deprivation. Functional connectivity analysis after sleep deprivation showed a weakened functional connectivity pattern in a widespread network with the precuneus and posterior cingulate cortex as the key nodes. Furthermore, the changes caused by sleep deprivation were reversed to a certain extent but not significantly after one night of sleep recovery, which may be due to inadequate time for recovery sleep. In conclusion, large-scale resting-state alpha-band activation and functional connectivity were weakened after sleep deprivation, and the inhibition of default mode network function with the precuneus and posterior cingulate cortex as the pivotal nodes may be an important cause of cognitive impairment. These findings provide new insight into the physiological response to sleep deprivation and determine how sleep deprivation disrupts brain alpha-band oscillations.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-020-79816-8