Identification and expression of functionally conserved circadian clock genes in lichen-forming fungi

Lichen-forming fungi establish stable symbioses with green algae or cyanobacteria. Many species have broad distributions, both in geographic and ecological space, making them ideal subjects to study organism-environment interactions. However, little is known about the specific mechanisms that contri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-09, Vol.12 (1), p.15884-8, Article 15884
Hauptverfasser: Valim, Henrique F., Dal Grande, Francesco, Otte, Jürgen, Singh, Garima, Merges, Dominik, Schmitt, Imke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lichen-forming fungi establish stable symbioses with green algae or cyanobacteria. Many species have broad distributions, both in geographic and ecological space, making them ideal subjects to study organism-environment interactions. However, little is known about the specific mechanisms that contribute to environmental adaptation in lichen-forming fungi. The circadian clock provides a well-described mechanism that contributes to regional adaptation across a variety of species, including fungi. Here, we identify the putative circadian clock components in phylogenetically divergent lichen-forming fungi. The core circadian genes ( frq, wc-1, wc-2, frh ) are present across the Fungi, including 31 lichen-forming species, and their evolutionary trajectories mirror overall fungal evolution. Comparative analyses of the clock genes indicate conserved domain architecture among lichen- and non-lichen-forming taxa. We used RT-qPCR to examine the core circadian loop of two unrelated lichen-forming fungi, Umbilicaria pustulata (Lecanoromycetes) and Dermatocarpon miniatum (Eurotiomycetes), to determine that the putative frq gene is activated in a light-dependent manner similar to the model fungus Neurospora crassa . Together, these results demonstrate that lichen-forming fungi retain functional light-responsive mechanisms, including a functioning circadian clock. Our findings provide a stepping stone into investigating the circadian clock in the lichen symbiosis, e.g. its role in adaptation, and in synchronizing the symbiotic interaction.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-19646-y