High-throughput terahertz imaging: progress and challenges

Many exciting terahertz imaging applications, such as non-destructive evaluation, biomedical diagnosis, and security screening, have been historically limited in practical usage due to the raster-scanning requirement of imaging systems, which impose very low imaging speeds. However, recent advanceme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2023-09, Vol.12 (1), p.233-233, Article 233
Hauptverfasser: Li, Xurong, Li, Jingxi, Li, Yuhang, Ozcan, Aydogan, Jarrahi, Mona
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many exciting terahertz imaging applications, such as non-destructive evaluation, biomedical diagnosis, and security screening, have been historically limited in practical usage due to the raster-scanning requirement of imaging systems, which impose very low imaging speeds. However, recent advancements in terahertz imaging systems have greatly increased the imaging throughput and brought the promising potential of terahertz radiation from research laboratories closer to real-world applications. Here, we review the development of terahertz imaging technologies from both hardware and computational imaging perspectives. We introduce and compare different types of hardware enabling frequency-domain and time-domain imaging using various thermal, photon, and field image sensor arrays. We discuss how different imaging hardware and computational imaging algorithms provide opportunities for capturing time-of-flight, spectroscopic, phase, and intensity image data at high throughputs. Furthermore, the new prospects and challenges for the development of future high-throughput terahertz imaging systems are briefly introduced.
ISSN:2047-7538
2095-5545
2047-7538
DOI:10.1038/s41377-023-01278-0