Stress partitioning in a near-β Titanium alloy induced by elastic and plastic phase anisotropies: experimental and modeling

The load transfer induced by the elastic and plastic phase anisotropies of a Ti–10V–2Fe–3Al titanium alloy is studied. The microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic texture neither for α nor β phase. Tensile tests along...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MATEC Web of Conferences 2020-01, Vol.321, p.11090
Hauptverfasser: PURUSHOTTAM RAJ PUROHIT, Ravi raj purohit, LHADI, Safaa, GEY, Nathalie, CASTELNAU, Olivier, RICHETON, Thiebaud, GERMAIN, Lionel, BERBENNI, Stephane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The load transfer induced by the elastic and plastic phase anisotropies of a Ti–10V–2Fe–3Al titanium alloy is studied. The microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic texture neither for α nor β phase. Tensile tests along the elongation direction, at a strain rate of 2 x 10 -3 s -1 give a yield stress of 830 MPa with 13% ductility. Simulations based on an advanced two-phase polycrystalline elasto-viscoplastic self-consistent (EVPSC) model predict that the β phase first plastifies with a sequential onset of plasticity starting from oriented β grains, then and finally oriented β grains. This leads to a strong load transfer from the β grains to the α nodules whose average behavior remains elastic up to high stresses (~940 MPa). However, additional simulations considering exclusively β grains of specific orientation show that the behavior of α nodules is strongly dependent on the β texture in which they are embedded. Especially, in β grains, which plastify the latest, the model predicts the onset of plasticity in favorably orientated α nodules. Moreover, the orientation spread within the β grains can modify the average plastic behavior of α phase. In future, these results will be compared to data obtained from in-situ High Energy XRD and SEM/EBSD experiments.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/202032111090