Research on automatic picking of microseismic first arrival

Accurate picking of the first arrival of microseisms is the prerequisite for the estimation of source location. The traditional manual picking method is inefficient and time-consuming. The short time average long time average (STA/LTA) method, commonly used in automatic picking, has low picking accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gong kuang zi dong hua = Industry and mine automation 2020-12, Vol.46 (12), p.106-110
Hauptverfasser: GAO Yu, HU Binxin, ZHU Feng, ZHANG Hua, SONG Guangdong, GAO Guofang, PANG Jiangbo, ZHONG Guodong, QUAN Ni
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate picking of the first arrival of microseisms is the prerequisite for the estimation of source location. The traditional manual picking method is inefficient and time-consuming. The short time average long time average (STA/LTA) method, commonly used in automatic picking, has low picking accuracy for low signal-to-noise ratio signals. To address the above problems, a random forest-based automatic picking method of microseismic first arrival is proposed. Firstly, this study extracts the amplitude, energy and amplitude ratio of adjacent moments of microseismic data as features and mark each sample with feature categories. Secondly, a random forest model is constructed to identify microseismic first arrivals. Thirdly, the random forest model is used to calculate the probability of each test sample belonging to a certain category, and the first data sampling point with a probability of no less than 0.5 is defined as the microseismic first arrivals sampling point. In this experiment, microseismic monitoring
ISSN:1671-251X
DOI:10.13272/j.issn.1671-251x.17564