Energy, economic and environmental performance simulation of a hybrid renewable microgeneration system with neural network predictive control

The use of artificial neural networks (ANNs) in various applications has grown significantly over the years. This paper compares an ANN based approach with a conventional on-off control applied to the operation of a ground source heat pump/photovoltaic thermal system serving a single house located i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal 2018-03, Vol.57 (1), p.455-473
Hauptverfasser: Entchev, Evgueniy, Yang, Libing, Ghorab, Mohamed, Rosato, Antonio, Sibilio, Sergio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of artificial neural networks (ANNs) in various applications has grown significantly over the years. This paper compares an ANN based approach with a conventional on-off control applied to the operation of a ground source heat pump/photovoltaic thermal system serving a single house located in Ottawa (Canada) for heating and cooling purposes. The hybrid renewable microgeneration system was investigated using the dynamic simulation software TRNSYS. A controller for predicting the future room temperature was developed in the MATLAB environment and six ANN control logics were analyzed. The comparison was performed in terms of ability to maintain the desired indoor comfort levels, primary energy consumption, operating costs and carbon dioxide equivalent emissions during a week of the heating period and a week of the cooling period. The results showed that the ANN approach is potentially able to alleviate the intensity of thermal discomfort associated with overheating/overcooling phenomena, but it could cause an increase in unmet comfort hours. The analysis also highlighted that the ANNs based strategies could reduce the primary energy consumption (up to around 36%), the operating costs (up to around 81%) as well as the carbon dioxide equivalent emissions (up to around 36%).
ISSN:1110-0168
DOI:10.1016/j.aej.2016.09.001