The mechanisms of Porphyromonas gingivalis–derived outer membrane vesicles-induced neurotoxicity and microglia activation

Periodontitis is associated with various systemic diseases, potentially facilitated by the passage of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs). Several recent studies have suggested a connection between Pg-OMVs and neuroinflammation and neurodegeneration, but the precise causal rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dental sciences 2024-07, Vol.19 (3), p.1434-1442
Hauptverfasser: Chuang, Wei-Chun, Yang, Cheng-Ning, Wang, Han-Wei, Lin, Sze-Kwan, Yu, Ching-Chu, Syu, Jhe-Hao, Chiang, Chun-Pin, Shiao, Young-Ji, Chen, Yi-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Periodontitis is associated with various systemic diseases, potentially facilitated by the passage of Porphyromonas gingivalis outer membrane vesicles (Pg-OMVs). Several recent studies have suggested a connection between Pg-OMVs and neuroinflammation and neurodegeneration, but the precise causal relationship remains unclear. This study aimed to investigate the mechanisms underlying these associations using in vitro models. Isolated Pg-OMVs were characterized by morphology, size, and gingipain activity. We exposed SH-SY5Y neuroblastoma cells and BV-2 microglial cells to various concentrations of Pg-OMVs. Cell morphology, a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, an enzyme-linked immunosorbent assay, and Western blot analysis were used to evaluate the cellular mechanism underlying Pg-OMV-induced neurotoxicity in neuronal cells and inflammatory responses in microglial cells. Exposure to Pg-OMVs induced neurotoxicity in SH-SY5Y cells, as evidenced by cellular shrinkage, reduced viability, activation of apoptotic pathways, and diminished neuronal differentiation markers. Gingipain inhibition mitigated these effects, suggesting that gingipain mediates Pg-OMVs-induced neurotoxicity in SH-SY5Y cells. Our research on neuroinflammation suggests that upon endocytosis of Pg-OMVs by BV-2 cells, lipopolysaccharide (LPS) can modulate the production of inducible nitric oxide synthase and tumor necrosis factor-alpha by activating pathways that involve phosphorylated AKT and the phosphorylated JNK pathway. Our study demonstrated that following the endocytosis of Pg-OMVs, gingipain can induce neurotoxicity in SH-SY5Y cells. Furthermore, the Pg-OMVs-associated LPS can trigger neuroinflammation via AKT and JNK signaling pathways in BV-2 cells.
ISSN:1991-7902
2213-8862
DOI:10.1016/j.jds.2024.04.002