oneM2M-Enabled Prediction of High Particulate Matter Data Based on Multi-Dense Layer BiLSTM Model

High particulate matter (PM) concentrations in the cleanroom semiconductor factory have become a significant concern as they can damage electronic devices during the manufacturing process. PM can be predicted before becoming more concentrated based on its historical data to support factory managemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-02, Vol.12 (4), p.2260
Hauptverfasser: Prihatno, Aji Teguh, Utama, Ida Bagus Krishna Yoga, Jang, Yeong Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High particulate matter (PM) concentrations in the cleanroom semiconductor factory have become a significant concern as they can damage electronic devices during the manufacturing process. PM can be predicted before becoming more concentrated based on its historical data to support factory management in regulating the air quality in the cleanroom. In this paper, a Multi-Dense Layer BiLSTM model is proposed to predict PM2.5 concentrations in the indoor environment of the cleanroom. To obtain reliability, validity, and interoperability data, the datasets containing temperature, humidity, PM0.3, PM0.5, PM1, PM2.5, PM5, and PM10 were retrieved in a standardized manner via oneM2M-defined representational state transfer application programmable interfaces by employing software platforms compliant with the Internet of Things (IoT) standard. Based on the proposed model, an algorithm was built providing short-term PM2.5 concentration predictions (one hour ahead, two hours ahead, and three hours ahead). The proposed model outperformed the RNN, LSTM, CNN-LSTM, and Single-Dense Layer BiLSTM models in terms of MSE, MAE, and MAPE values. The model created in this study could predict high PM2.5 concentration levels more accurately, thus providing vital support for operation and maintenance for the semiconductor industry.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12042260