A chiral one-dimensional atom using a quantum dot in an open microcavity

In a chiral one-dimensional atom, a photon propagating in one direction interacts with the atom; a photon propagating in the other direction does not. Chiral quantum optics has applications in creating nanoscopic single-photon routers, circulators, phase-shifters, and two-photon gates. Here, we impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2022-03, Vol.8 (1), p.1-5, Article 27
Hauptverfasser: Antoniadis, Nadia O., Tomm, Natasha, Jakubczyk, Tomasz, Schott, Rüdiger, Valentin, Sascha R., Wieck, Andreas D., Ludwig, Arne, Warburton, Richard J., Javadi, Alisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a chiral one-dimensional atom, a photon propagating in one direction interacts with the atom; a photon propagating in the other direction does not. Chiral quantum optics has applications in creating nanoscopic single-photon routers, circulators, phase-shifters, and two-photon gates. Here, we implement chiral quantum optics using a low-noise quantum dot in an open microcavity. We demonstrate the non-reciprocal absorption of single photons, a single-photon diode. The non-reciprocity, the ratio of the transmission in the forward-direction to the transmission in the reverse direction, is as high as 10.7 dB. This is achieved by tuning the photon-emitter coupling in situ to the optimal operating condition ( β  = 0.5). Proof that the non-reciprocity arises from a single quantum emitter lies in the photon statistics—ultralow-power laser light propagating in the diode’s reverse direction results in a highly bunched output ( g (2) (0) = 101), showing that the single-photon component is largely removed.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-022-00545-z