Likelihood-based approach to discriminate mixtures of network models that vary in time

Discriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closure, with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-03, Vol.11 (1), p.5205-5205, Article 5205
Hauptverfasser: Arnold, Naomi A., Mondragón, Raul J., Clegg, Richard G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Discriminating between competing explanatory models as to which is more likely responsible for the growth of a network is a problem of fundamental importance for network science. The rules governing this growth are attributed to mechanisms such as preferential attachment and triangle closure, with a wealth of explanatory models based on these. These models are deliberately simple, commonly with the network growing according to a constant mechanism for its lifetime, to allow for analytical results. We use a likelihood-based framework on artificial data where the network model changes at a known point in time and demonstrate that we can recover the change point from analysis of the network. We then use real datasets and demonstrate how our framework can show the changing importance of network growth mechanisms over time.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-84085-0