Microfluidic active loading of single cells enables analysis of complex clinical specimens

A fundamental trade-off between flow rate and measurement precision limits performance of many single-cell detection strategies, especially for applications that require biophysical measurements from living cells within complex and low-input samples. To address this, we introduce ‘active loading’, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-11, Vol.9 (1), p.4784-7, Article 4784
Hauptverfasser: Calistri, Nicholas L., Kimmerling, Robert J., Malinowski, Seth W., Touat, Mehdi, Stevens, Mark M., Olcum, Selim, Ligon, Keith L., Manalis, Scott R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fundamental trade-off between flow rate and measurement precision limits performance of many single-cell detection strategies, especially for applications that require biophysical measurements from living cells within complex and low-input samples. To address this, we introduce ‘active loading’, an automated, optically-triggered fluidic system that improves measurement throughput and robustness by controlling entry of individual cells into a measurement channel. We apply active loading to samples over a range of concentrations (1–1000 particles μL −1 ), demonstrate that measurement time can be decreased by up to 20-fold, and show theoretically that performance of some types of existing single-cell microfluidic devices can be improved by implementing active loading. Finally, we demonstrate how active loading improves clinical feasibility for acute, single-cell drug sensitivity measurements by deploying it to a preclinical setting where we assess patient samples from normal brain, primary and metastatic brain cancers containing a complex, difficult-to-measure mixture of confounding biological debris. Single-cell detection methods are limited by the trade-off between flow rate and measurement precision. Here the authors introduce active loading, an optically triggered microfluidic system to concentrate diluted cell samples, which reduces clogging and decreases processing time in single-cell assays.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-07283-x