Multi-Variable, Multi-Layer Graphical Knowledge Unit for Storing and Representing Density Clusters of Multi-Dimensional Big Data
A multi-variable visualization technique on a 2D bitmap for big data is introduced. If A and B are two data points that are represented using two similar shapes with m pixels, where each shape is colored with RGB color of (0, 0, k), when A ∩ B ≠ ɸ, adding the color of A ∩ B gives higher color as (0,...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2016, Vol.6 (4), p.96-96 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A multi-variable visualization technique on a 2D bitmap for big data is introduced. If A and B are two data points that are represented using two similar shapes with m pixels, where each shape is colored with RGB color of (0, 0, k), when A ∩ B ≠ ɸ, adding the color of A ∩ B gives higher color as (0, 0, 2k) and the highlight as a high density cluster, where RGB stands for Red, Green, Blue and k is the blue color. This is the hypothesis behind the single variable graphical knowledge unit (GKU), which uses the entire bit range of a pixel for a single variable. Instead, the available bit range of a pixel is split, and a pixel can be used for representing multiple variables (multi-variables). However, this will limit the bit block for single variables and limit the amount of overlapping. Using the same size k (>1) bitmaps (multi-layers) will increase the number of bits per variable (BPV), where each (x, y) of an individual layer represents the same data point. Then, one pixel in a four-layer GKU is capable of showing more than four billion overlapping ones when BPV = 8 bits (2(BPV × number of layers)) Then, the 32-bit pixel format allows the representation of a maximum of up to four dependent variables against one independent variable. Then, a four-layer GKU of w width and h height has the capacity of representing a maximum of (2(BPV × number of layers)) × m × w × h overlapping occurrences. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app6040096 |