Striving toward hyperthermia-free analgesia: lessons from loss-of-function mutations of human TRPV1

Transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin and noxious heat, has been one of the most compelling targets for analgesics. However, systemic inhibition of TRPV1 is an impractical approach as a pain killer, since systemic antagonism induces hyperthermia. Two articles in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2023-02, Vol.133 (3), p.1-3
Hauptverfasser: Li, Tingting, Chung, Man-Kyo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transient receptor potential vanilloid 1 (TRPV1), a receptor for capsaicin and noxious heat, has been one of the most compelling targets for analgesics. However, systemic inhibition of TRPV1 is an impractical approach as a pain killer, since systemic antagonism induces hyperthermia. Two articles in this issue of the JCI report phenotypes from separate, rare missense mutations of human TRPV1. He, Zambelli, and colleagues investigated TRPV1K710N, which showed reduced functionality, while Katz, Zaguri, and co-authors reported on TRPV1N331K, which led to a complete functional knockout. The findings provide insights that will improve our understanding of the endogenous functions of TRPV1 in humans and may facilitate a rational TRPV1-targeting approach to achieve hyperthermia-free analgesia.
ISSN:1558-8238
0021-9738
1558-8238
DOI:10.1172/JCI167338