Stable Continuous Production of γ-Valerolactone from Biomass-Derived Levulinic Acid over Zr–Al-Beta Zeolite Catalyst

The one-pot conversion of biomass-derived platform molecules such as levulinic acid (LA) and furfural (FAL) into γ-valerolactone (GVL) is challenging because of the need for adequate multi-functional catalysts and high-pressure gaseous hydrogen. As a more sustainable alternative, here we describe th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2020-06, Vol.10 (6), p.678
Hauptverfasser: López-Aguado, Clara, Paniagua, Marta, Melero, Juan A., Iglesias, Jose, Juárez, Pablo, López Granados, Manuel, Morales, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The one-pot conversion of biomass-derived platform molecules such as levulinic acid (LA) and furfural (FAL) into γ-valerolactone (GVL) is challenging because of the need for adequate multi-functional catalysts and high-pressure gaseous hydrogen. As a more sustainable alternative, here we describe the transfer hydrogenation of LA to GVL using isopropanol as a hydrogen donor over a Zr-modified beta zeolite catalyst in a continuous fixed-bed reactor. A stable sustained production of GVL was achieved from the levulinic acid, with both high LA conversion (ca. 95%) and GVL yield (ca. 90%), for over at least 20 days in continuous operation at 170 °C. Importantly, the small decay in activity can be advantageously overcome by the means of a simple in situ thermal regeneration in the air atmosphere, leading to a complete recovery of the catalyst activity. Key to this outstanding result is the use of a Zr-modified dealuminated beta zeolite with a tailored Lewis/Brønsted acid sites ratio, which can synergistically catalyze the tandem steps of hydrogen transfer and acid-catalyzed transformations, leading to such a successful and stable production of GVL from LA.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10060678