The influence of ammonia on groundwater quality during wastewater irrigation

Currently, agriculture in many countries including the Czech Republic is increasingly facing the problem of drought. The lack of precipitation results in a reduced harvest, which implies added irrigation and freshwater requirements. One of the ways to overcome the scarcity of fresh water is to searc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil and water research 2018-01, Vol.13 (3), p.161-169
Hauptverfasser: KRIŠKA, Michal, NĚMCOVÁ, Miroslava, HYÁNKOVÁ, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, agriculture in many countries including the Czech Republic is increasingly facing the problem of drought. The lack of precipitation results in a reduced harvest, which implies added irrigation and freshwater requirements. One of the ways to overcome the scarcity of fresh water is to search for alternative sources of irrigation water. The paper deals with a water source, which has not been preferred yet, but theoretically provides a wide application - treated municipal wastewater. Under a pilot plant, several selected soils were tested, placed in 2.0 m high filtration columns. Our observation was focused on ammonia nitrogen and its gradual decline during the flow through the soil profile. Samples from the filtration columns (inflow = irrigation; outflow = drainage water) were periodically taken, while the collected data were used for calibration of the numerical model. The model was calibrated in two successive separate steps, both were compiled in HYDRUS-2D. In the first step the model was calibrated according to the measured soil water content of materials. Subsequently, a second calibration was performed using the measured seepage concentrations of ammonia. Despite certain simplifications caused by the focus only on ammonia nitrogen, the model shows very favourable results. The hydraulic model’s goodness of fit (between observed vs. measured values of water content) is R2 = 0.88 for sand, 0.76 for loam, 0.72 for sandy-loam with vegetation on surface and 0.74 for sandy-loam without vegetation. The calibrated hydraulic model for solute transport (between observed vs. measured values of NH4+-N concentration) showed the value of R2 = 0.89 for sand, 0.95 for loam, 0.95 for sandy-loam with vegetation on surface and 0.92 for sandy-loam without vegetation. The model provides significant information on the dependence of decrease of ammonia pollution by the depth. Inflow concentration of ammonia on surface 17 ± 1 mg/l is reduced to the value of 2.0 mg/l at a depth of 110 cm. It is crucial for real application to maintain the hydraulic criteria - the field capacity should not be exceeded in praxis. The value of field capacity was deliberately slightly exceeded because of understanding of the situation: how the pollution proceeds below if this rule is not followed. As a result, if wastewater is applied, the groundwater level should not be at a depth of less than 1.5 m.
ISSN:1801-5395
1805-9384
DOI:10.17221/124/2017-SWR