Tumor-targeting anti-EGFR x anti-PD1 bispecific antibody inhibits EGFR-overexpressing tumor growth by combining EGFR blockade and immune activation with direct tumor cell killing

•The anti-PD1 x anti-EGFR bispecific antibody (BsAb) exhibited all in-vitro bioactivities comparable to that of the parental mAbs and showed anti-tumor efficacies of each of the two arms on par with the mAbs in-vivo.•The anti-PD1 x anti-EGFR bispecific antibody (BsAb) retained full ADCC towards canc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Translational oncology 2021-01, Vol.14 (1), p.100916-100916, Article 100916
Hauptverfasser: Li, Li, Deng, Lan, Meng, Xiaoqing, Gu, Changling, Meng, Li, Li, Kai, Zhang, Xuesai, Meng, Yun, Xu, Wei, Zhao, Le, Chen, Jianhe, Zhu, Zhenping, Huang, Haomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The anti-PD1 x anti-EGFR bispecific antibody (BsAb) exhibited all in-vitro bioactivities comparable to that of the parental mAbs and showed anti-tumor efficacies of each of the two arms on par with the mAbs in-vivo.•The anti-PD1 x anti-EGFR bispecific antibody (BsAb) retained full ADCC towards cancer cells but not to T cells. Thus the BsAb is capable of killing tumor cells via ADCC while sparing T cells for T cell-induced anti-tumor immunity.•The anti-PD1 x anti-EGFR bispecific antibody (BsAb) exhibited significantly stronger tumor cell killing effects in the presence of PBMC relative to that of combination of cetuximab with an anti-PD1 mAb, 609A. We developed a strategy to combine conventional targeted therapy with immune checkpoint blockade using a tumor-targeting bispecific antibody (BsAb) to treat solid tumors. The BsAb was designed to simultaneously engage a tumor-associated antigen, epidermal growth factor receptor (EGFR), and programed cell death protein 1 (PD1). In addition to its direct anti-tumor activity via EGFR inhibition, the BsAb mediated efficient antibody-dependent cellular cytotoxicity (ADCC) and activated T cell antitumor im munity through blockade of PD1 from interacting with its counterpart, programed cell death ligand 1 (PDL1). Further, the BsAb exhibited a potent direct tumor cell killing activity in the presence of PBMC, most likely, via activating and, at the same time, physically engaging T cells with tumor cells. Taken together, we here illustrate a new strategy in the design and production of novel BsAbs with enhanced therapeutic efficacy through both direct tumor growth inhibition and T cell activation via tumor-targeted immune checkpoint blockade.
ISSN:1936-5233
1936-5233
DOI:10.1016/j.tranon.2020.100916