A Novel Decomposition-Ensemble Learning Model Based on Ensemble Empirical Mode Decomposition and Recurrent Neural Network for Landslide Displacement Prediction
As vital comments on landslide early warning systems, accurate and reliable displacement prediction is essential and of significant importance for landslide mitigation. However, obtaining the desired prediction accuracy remains highly difficult and challenging due to the complex nonlinear characteri...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-05, Vol.11 (10), p.4684 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As vital comments on landslide early warning systems, accurate and reliable displacement prediction is essential and of significant importance for landslide mitigation. However, obtaining the desired prediction accuracy remains highly difficult and challenging due to the complex nonlinear characteristics of landslide monitoring data. Based on the principle of “decomposition and ensemble”, a three-step decomposition-ensemble learning model integrating ensemble empirical mode decomposition (EEMD) and a recurrent neural network (RNN) was proposed for landslide displacement prediction. EEMD and kurtosis criteria were first applied for data decomposition and construction of trend and periodic components. Second, a polynomial regression model and RNN with maximal information coefficient (MIC)-based input variable selection were implemented for individual prediction of trend and periodic components independently. Finally, the predictions of trend and periodic components were aggregated into a final ensemble prediction. The experimental results from the Muyubao landslide demonstrate that the proposed EEMD-RNN decomposition-ensemble learning model is capable of increasing prediction accuracy and outperforms the traditional decomposition-ensemble learning models (including EEMD-support vector machine, and EEMD-extreme learning machine). Moreover, compared with standard RNN, the gated recurrent unit (GRU)-and long short-term memory (LSTM)-based models perform better in predicting accuracy. The EEMD-RNN decomposition-ensemble learning model is promising for landslide displacement prediction. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11104684 |