Dirichlet Forms Constructed from Annihilation Operators on Bernoulli Functionals

The annihilation operators on Bernoulli functionals (Bernoulli annihilators, for short) and their adjoint operators satisfy a canonical anticommutation relation (CAR) in equal-time. As a mathematical structure, Dirichlet forms play an important role in many fields in mathematical physics. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in Mathematical Physics 2017-01, Vol.2017 (2017), p.1-7
Hauptverfasser: Wang, Caishi, Wang, Beiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The annihilation operators on Bernoulli functionals (Bernoulli annihilators, for short) and their adjoint operators satisfy a canonical anticommutation relation (CAR) in equal-time. As a mathematical structure, Dirichlet forms play an important role in many fields in mathematical physics. In this paper, we apply the Bernoulli annihilators to constructing Dirichlet forms on Bernoulli functionals. Let w be a nonnegative function on N. By using the Bernoulli annihilators, we first define in a dense subspace of L2-space of Bernoulli functionals a positive, symmetric, bilinear form Ew associated with w. And then we prove that Ew is closed and has the contraction property; hence, it is a Dirichlet form. Finally, we consider an interesting semigroup of operators associated with w on L2-space of Bernoulli functionals, which we call the w-Ornstein-Uhlenbeck semigroup, and, by using the Dirichlet form, Ew we show that the w-Ornstein-Uhlenbeck semigroup is a Markov semigroup.
ISSN:1687-9120
1687-9139
DOI:10.1155/2017/8278161