IRF2BP2 binds to a conserved RxSVI motif of protein partners and regulates megakaryocytic differentiation

IRF2BP2 is a transcriptional coregulator that plays diverse regulatory roles in various cellular processes in either IRF2-dependent or IRF2-independent manner through interactions with protein partners via its RING domain; however, the underlying molecular mechanisms remain unclear. In this study, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-11, Vol.15 (1), p.10425-13, Article 10425
Hauptverfasser: Wang, Guanchao, Lu, Tiantian, Zhang, Lei, Ding, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IRF2BP2 is a transcriptional coregulator that plays diverse regulatory roles in various cellular processes in either IRF2-dependent or IRF2-independent manner through interactions with protein partners via its RING domain; however, the underlying molecular mechanisms remain unclear. In this study, we conduct a motif discovery search on the sequences of interacting proteins IRF2 and VGLL4 of IRF2BP2 and identify a conserved RxSVI motif. Biochemical and structural data reveal that the RING domain binds to the motif-containing peptides of IRF2 and VGLL4 with comparable affinities and in a similar manner. The motif-containing peptides tend to form a short loop along with a short β-strand, which facilitates effective recognition and tight binding by the RING domain. Further exploration of this motif in the human proteome identifies the transcription factor ZBTB16 as an interacting protein of IRF2BP2. Biochemical, structural, and cell biological data demonstrate that the RING domain binds to the motif-containing peptide of ZBTB16 in a manner similar to that of IRF2 and VGLL4. Moreover, IRF2BP2 plays a crucial regulatory role in megakaryocytic differentiation through interaction with ZBTB16. These findings elucidate the molecular basis for how IRF2BP2 can engage with different protein partners, thereby exerting diverse regulatory functions in many cellular processes. IRF2BP2 interacts with diverse protein partners to modulate cellular processes. Here, the authors report that IRF2BP2 binds to a RxSVI motif of protein partners via its RING domain and interacts with ZBTB16 to regulate megakaryocytic differentiation.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-54889-5