Simulation of biocrude production from P. tricornutum, S. platensis, and C. vulgaris using Aspenplus

Hydrothermal liquefaction (HTL) of biomass is performed at elevated pressure and temperature to avoid the drying process. This process is also suitable for the low grade biomass with higher moisture content. In this article, simulation of three types of microalgae species, such as Phaeodactylum tric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-09, Vol.10 (17), p.e36872, Article e36872
Hauptverfasser: Tushar, Mohammad Shahed H.K., Islam, Md Shafikul, Ahmmed, Taufique, Joarder, Md Sadman Anjum
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrothermal liquefaction (HTL) of biomass is performed at elevated pressure and temperature to avoid the drying process. This process is also suitable for the low grade biomass with higher moisture content. In this article, simulation of three types of microalgae species, such as Phaeodactylum tricornutum, Spirulina platensis, and Chlorella vulgaris, are performed using Aspen Plus®. Simulation conditions, for instance, temperature, proximate and ultimate analyses, feed rate, water content, component names, etc., are taken from the literatures. The results of microalgae are then compared at two different temperature conditions. The values, however, are not the same for all the materials due to the data availability from the literature. The highest calorific value is obtained from C. vulgaris; it is 37.27 MJ/kg at 621K, and the highest energy recovery and energy ratio are obtained from P. tricornutum; they are 88.78 % and 1.86, both at 648K respectively. The difference between experimental and simulated calorific values of different biocrudes are ranging from 2.7 % to 3.62 % at higher temperatures and from 4.68 % to 10.72 % at lower temperatures. Finally, it is found that the simulation results corroborate with the experimental results with minimal errors. [Display omitted]
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e36872