Advances in Designing Efficient La-Based Perovskites for the NOx Storage and Reduction Process

To overcome the inherent challenge of NOx reduction in the net oxidizing environment of diesel engine exhaust, the NOx storage and reduction (NSR) concept was proposed in 1995, soon developed and commercialized as a promising DeNOx technique over the past two decades. Years of practice suggest that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-06, Vol.12 (6), p.593
Hauptverfasser: Zhao, Dongyue, Song, Haitao, Liu, Jun, Jiang, Qiuqiao, Li, Xingang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To overcome the inherent challenge of NOx reduction in the net oxidizing environment of diesel engine exhaust, the NOx storage and reduction (NSR) concept was proposed in 1995, soon developed and commercialized as a promising DeNOx technique over the past two decades. Years of practice suggest that it is a tailor-made technique for light-duty diesel vehicles, with the advantage of being space saving, cost effective, and efficient in NOx abatement; however, the over-reliance of NSR catalysts on high loadings of Pt has always been the bottleneck for its wide application. There remains fervent interest in searching for efficient, economical, and durable alternatives. To date, La-based perovskites are the most explored promising candidate, showing prominent structural and thermal stability and redox property. The perovskite-type oxide structure enables the coupling of redox and storage centers with homogeneous distribution, which maximizes the contact area for NOx spillover and contributes to efficient NOx storage and reduction. Moreover, the wide range of possible cationic substitutions in perovskite generates great flexibility, yielding various formulations with interesting features desirable for the NSR process. Herein, this review provides an overview of the features and performances of La-based perovskite in NO oxidation, NOx storage, and NOx reduction, and in this way comprehensively evaluates its potential to substitute Pt and further improve the DeNOx efficiency of the current NSR catalyst. The fundamental structure–property relationships are summarized and highlighted to instruct rational catalyst design. The critical research needs and essential aspects in catalyst design, including poisoner resistance and catalyst sustainability, are finally addressed to inspire the future development of perovskite material for practical application.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12060593