Untargeted Metabolomics Analysis Using UHPLC-Q-TOF/MS Reveals Metabolic Changes Associated with Hypertension in Children

The mechanism of hypertension in children remains elusive. The objective of this study was to analyze plasma metabolomics characteristics to explore the potential mechanism of hypertension in children. Serum samples from 29 control children, 38 children with normal body mass index and simple hyperte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nutrients 2023-02, Vol.15 (4), p.836
Hauptverfasser: Zhang, Kexin, Liu, Yanyan, Liu, Lingyun, Bai, Baoling, Shi, Lin, Zhang, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanism of hypertension in children remains elusive. The objective of this study was to analyze plasma metabolomics characteristics to explore the potential mechanism of hypertension in children. Serum samples from 29 control children, 38 children with normal body mass index and simple hypertension (NBp), 8 children overweight with simple hypertension (OBp), 37 children with normal body mass index and H-type hypertension (NH) and 19 children overweight with H-type hypertension (OH) were analyzed by non-targeted metabolomics. A total of 1235 differential metabolites were identified between children with hypertension and normal controls, of which 193 metabolites including various lipids were significantly expressed. Compared with the control group, 3-dehydroepiandrosterone sulfate, oleic acid and linoleic acid were up-regulated, and gamma-muricholic acid was down-regulated in the NBp group; 3-dehydroepiandrosterone sulfate, 4-acetamidobutanoate and 1-hexadecanoyl-2-octadecadienoyl-sn-glyero-3-phosphocholine were up-regulated in the OBp group, whereas adenosine and 1-myristoyl-sn-glyero-3-phosphocholine were down-regulated; in the NH group, 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine, phenol and 3-methoxytyramine were up-regulated, while pentadecanoic acid was down-regulated; in the OH group, NG,NG-dimethyl-L-arginine, 1-palmitoyl-sn-glycero-3-phosphocholine and monoethyl phthalate were up-regulated, while phloretin and glycine were down-regulated. The results showed that the children with hypertension had obvious disorders of lipid metabolism (especially in the overweight hypertension group), which led to the occurrence of hypertension. Additionally, the concentration of NO production-related NG, NG-dimethyl-L-arginine, was significantly increased, which may play an important role in H-type hypertension in children.
ISSN:2072-6643
2072-6643
DOI:10.3390/nu15040836