Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals

Integral inequalities involving various fractional integral operators are used to solve many fractional differential equations. In this paper, authors prove some Hermite-Jensen-Mercer type inequalities using Ψ-Riemann-Liouville k-Fractional integrals via convex functions. We established some new Ψ-R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2020-01, Vol.5 (5), p.5193-5220
Hauptverfasser: Ihsan Butt, Saad, Kashuri, Artion, Umar, Muhammad, Aslam, Adnan, Gao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Integral inequalities involving various fractional integral operators are used to solve many fractional differential equations. In this paper, authors prove some Hermite-Jensen-Mercer type inequalities using Ψ-Riemann-Liouville k-Fractional integrals via convex functions. We established some new Ψ-Riemann-Liouville k-Fractional integral inequalities. We also give Ψ-Riemann-Liouville k-Fractional integrals identities for differentiable mapping, and these will be used to derive estimates for some fractional Hermite-Jensen-Mercer type inequalities. Some known results are recaptured from our results as special cases.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2020334