Tsc1 Loss in VIP-Lineage Cortical Interneurons Results in More VIP+ Interneurons and Enhanced Excitability
The mammalian target of rapamycin (mTOR) signaling pathway is a powerful regulator of cell proliferation, growth, synapse maintenance and cell fate. While intensely studied for its role in cancer, the role of mTOR signaling is just beginning to be uncovered in specific cell types that are implicated...
Gespeichert in:
Veröffentlicht in: | Cells (Basel, Switzerland) Switzerland), 2023-12, Vol.13 (1), p.52 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mammalian target of rapamycin (mTOR) signaling pathway is a powerful regulator of cell proliferation, growth, synapse maintenance and cell fate. While intensely studied for its role in cancer, the role of mTOR signaling is just beginning to be uncovered in specific cell types that are implicated in neurodevelopmental disorders. Previously, loss of the
gene, which results in hyperactive mTOR, was shown to affect the function and molecular properties of GABAergic cortical interneurons (CINs) derived from the medial ganglionic eminence. To assess if other important classes of CINs could be impacted by mTOR dysfunction, we deleted
in a caudal ganglionic eminence-derived interneuron group, the vasoactive intestinal peptide (VIP)+ subtype, whose activity disinhibits local circuits.
mutant VIP+ CINs reduced their pattern of apoptosis from postnatal days 15-20, resulting in increased VIP+ CINs. The mutant CINs exhibited synaptic and electrophysiological properties that could contribute to the high rate of seizure activity in humans that harbor
mutations. |
---|---|
ISSN: | 2073-4409 2073-4409 |
DOI: | 10.3390/cells13010052 |