Improving Magnetic Field Response of Eddy Current Magneto-Optical Imaging for Defect Detection in Carbon Fiber Reinforced Polymers
A large number of carbon fiber reinforced polymers have been applied to aircraft and automobiles, and many nondestructive testing methods have been studied to detect their defects. Eddy current magneto-optical imaging nondestructive testing technology has been widely used in the detection of metal m...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2023-04, Vol.13 (7), p.4541 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A large number of carbon fiber reinforced polymers have been applied to aircraft and automobiles, and many nondestructive testing methods have been studied to detect their defects. Eddy current magneto-optical imaging nondestructive testing technology has been widely used in the detection of metal materials such as aircraft skin, but it usually requires a large excitation current and, at present, can only detect metal materials with high conductivity. In order to take full advantage of the innate benefits and efficiency of eddy current magneto-optic imaging and enable it to detect defects in carbon fiber reinforced polymers with weak conductivity, it is necessary to improve the magnetic field response of the eddy current magneto-optic imaging system and explore suitable excitation and detection methods. The scanning eddy current magneto-optical imaging nondestructive testing device built in this study has improved the magnetic field response of the system, and the eddy current magneto-optical phase imaging testing method has been proposed to detect the crack defects of carbon fiber reinforced polymers. The effectiveness of the method has been verified by simulation and experiment. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13074541 |