Research on Co-channel Interference Suppression Method for Passive Radar Based on the Jiont Processing of Primary and Reference Channels

The illuminators of passive radar based civil communication signals are densely distributed. As a result, the co-channel illuminator always interferes with the primary and reference channels, resulting in poor detection performance. To solve the aforementioned problem, an improved signal processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radars = Lei da xue bao 2020-12, Vol.9 (6), p.974-986
Hauptverfasser: Pingyu LIU, Xiaode LYU, Zhongsheng LIU, Hanliang ZHANG
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The illuminators of passive radar based civil communication signals are densely distributed. As a result, the co-channel illuminator always interferes with the primary and reference channels, resulting in poor detection performance. To solve the aforementioned problem, an improved signal processing flow with co-channel interference suppression is proposed in this paper. First, signals from all channels were processed jointly. The direct-path wave of each illuminator was estimated using the multi-channel blind deconvolution algorithm. Then, the direct-path wave of the primary illuminator was identified as the reference signal by applying the difference in the proportion of the primary illuminator signal energy among channels. Then, the clutter of each illuminator in the primary channel was suppressed by utilizing each of the above estimated signals. Finally, the residual signal, after cancellation, was used to compute the cross-ambiguity functions with the identified direct-path wave of the primary illuminator for target detection. The improved flow can promote the cancellation ratio and reduce the bottom noise of the cross-ambiguity function and missed alarm. Co-channel interference can be effectively suppressed using the improved processing flow without changing the radar system’s hardware. The validity of the proposed method were confirmed by the results of the simulation and experiment.
ISSN:2095-283X
DOI:10.12000/JR19047