Discrimination of black-capped chickadee (Poecile atricapillus) chick-a-dee calls produced across seasons

While black-capped chickadees (Poecile atricapillus) primarily produce fee-bee songs in spring, they produce chick-a-dee calls year-round with call production peaking in the fall. This call serves multiple functions, including food location, flock communication, and predator alarm. As seasons change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal behavior and cognition 2020-05, Vol.7 (2), p.247-256
Hauptverfasser: Scully, Erin N., Campbell, Kimberly A., Congdon, Jenna V., Sturdy, Christopher B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While black-capped chickadees (Poecile atricapillus) primarily produce fee-bee songs in spring, they produce chick-a-dee calls year-round with call production peaking in the fall. This call serves multiple functions, including food location, flock communication, and predator alarm. As seasons change, the meaning of the call may also change. For instance, flock communication could be more important in the fall than in the spring, and food type and availability change according to season. To determine if the chick-a-dee call varies acoustically across seasons in a predictable manner, we conducted an operant go/no-go discrimination task that examined black-capped chickadees’ ability to categorize calls produced in two different seasons: fall and spring. We found that birds trained to respond to vocalizations produced in either fall or spring learned to discriminate at the same rate as birds trained to respond to pseudorandomized stimuli, suggesting that none of the groups demonstrated category learning, relying instead on rote memorization. These results suggest that while chickadees can be trained to discriminate between chick-a-dee calls produced in different seasons, they do not discriminate these calls or perceive these calls as being members of natural, preexisting, perceptual categories, based on an underlying perceptual similarity.
ISSN:2372-5052
2372-4323
DOI:10.26451/abc.07.02.14.2020