Practical Quantum Error Correction with the XZZX Code and Kerr-Cat Qubits

The development of robust architectures capable of large-scale fault-tolerant quantum computation should consider both their quantum error-correcting codes and the underlying physical qubits upon which they are built, in tandem. Following this design principle, we demonstrate remarkable error-correc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PRX quantum 2021-09, Vol.2 (3), p.030345, Article 030345
Hauptverfasser: Darmawan, Andrew S., Brown, Benjamin J., Grimsmo, Arne L., Tuckett, David K., Puri, Shruti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of robust architectures capable of large-scale fault-tolerant quantum computation should consider both their quantum error-correcting codes and the underlying physical qubits upon which they are built, in tandem. Following this design principle, we demonstrate remarkable error-correction performance by concatenating the XZZX surface code with Kerr-cat qubits. We contrast several variants of fault-tolerant systems undergoing different circuit-noise models that reflect the physics of Kerr-cat qubits. Our simulations show that our system is scalable below a threshold gate infidelity of p_{CX}∼6.5% within a physically reasonable parameter regime, where p_{CX} is the infidelity of the noisiest gate of our system, the controlled-not gate. This threshold can be reached in a superconducting-circuit architecture with a Kerr nonlinearity of 10MHz, an approximately 6.25-photon cat qubit, single-photon lifetime of ≳64μs, and a thermal photon population ≲8%. Such parameters are routinely achieved in superconducting circuits.
ISSN:2691-3399
2691-3399
DOI:10.1103/PRXQuantum.2.030345