Real-Time Assembly Support System with Hidden Markov Model and Hybrid Extensions

This paper presents a context-aware adaptive assembly assistance system meant to support factory workers by embedding predictive capabilities. The research is focused on the predictor which suggests the next assembly step. Hidden Markov models are analyzed for this purpose. Several prediction method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-08, Vol.10 (15), p.2725
Hauptverfasser: Gellert, Arpad, Precup, Stefan-Alexandru, Matei, Alexandru, Pirvu, Bogdan-Constantin, Zamfirescu, Constantin-Bala
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a context-aware adaptive assembly assistance system meant to support factory workers by embedding predictive capabilities. The research is focused on the predictor which suggests the next assembly step. Hidden Markov models are analyzed for this purpose. Several prediction methods have been previously evaluated and the prediction by partial matching, which was the most efficient, is considered in this work as a component of a hybrid model together with an optimally configured hidden Markov model. The experimental results show that the hidden Markov model is a viable choice to predict the next assembly step, whereas the hybrid predictor is even better, outperforming in some cases all the other models. Nevertheless, an assembly assistance system meant to support factory workers needs to embed multiple models to exhibit valuable predictive capabilities.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10152725