Power series techniques for a special Schrödinger operator and related difference equations
: We address finding solutions y ∈ ʗ2 (ℝ+) of the special (linear) ordinary differential equation xy''(x) + (ax2 + b) y' (x) + (cx + d)y(x) = 0 for all x ∈ ℝ+, where a, b, c, d ∈ ℝ are constant parameters. This will be achieved in three special cases via separation and a power series...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2005-05, Vol.2005 (2), p.517967-517967 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | : We address finding solutions y ∈ ʗ2 (ℝ+) of the special (linear) ordinary differential equation xy''(x) + (ax2 + b) y' (x) + (cx + d)y(x) = 0 for all x ∈ ℝ+, where a, b, c, d ∈ ℝ are constant parameters. This will be achieved in three special cases via separation and a power series method which is specified using difference equation techniques. Moreover, we will prove that our solutions are square integrable in a weighted sense-the weight function being similar to the Gaussian bell in the scenario of Hermite polynomials. Finally, we will discuss the physical relevance of our results, as the differential equation is also related to basic problems in quantum mechanics. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/1687-1847-2005-517967 |