Fault Diagnosis of Inter-Turn Fault in Permanent Magnet-Synchronous Motors Based on Cycle-Generative Adversarial Networks and Deep Autoencoder

This paper addresses the issue of the difficulty in obtaining inter-turn fault (ITF) samples in electric motors, specifically in permanent magnet-synchronous motors (PMSMs), where the number of ITF samples in the stator windings is severely lacking compared to healthy samples. To effectively identif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-03, Vol.14 (5), p.2139
Hauptverfasser: Huang, Wenkuan, Chen, Hongbin, Zhao, Qiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the issue of the difficulty in obtaining inter-turn fault (ITF) samples in electric motors, specifically in permanent magnet-synchronous motors (PMSMs), where the number of ITF samples in the stator windings is severely lacking compared to healthy samples. To effectively identify these faults, an improved fault diagnosis method based on the combination of a cycle-generative adversarial network (GAN) and a deep autoencoder (DAE) is proposed. In this method, the Cycle GAN is used to expand the collection of fault samples for PMSMs, while the DAE enhances the capability to extract and analyze these fault samples, thus improving the accuracy of fault diagnosis. The experimental results demonstrate that Cycle GAN exhibits an excellent capability to generate ITF fault samples. The proposed method achieves a diagnostic accuracy rate of up to 98.73% for ITF problems.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14052139