Stability of parabolic equations with unbounded operators acting on delay terms
In this article, we study the stability of the initial value problem for the delay differential equation $$\displaylines{ \frac{dv(t)}{dt}+Av(t)=B(t)v(t-\omega )+f(t),\quad t\geq 0,\cr v(t)=g(t)\quad (-\omega \leq t\leq 0) }$$ in a Banach space E with the unbounded linear operators A and B(t) with d...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2014-07, Vol.2014 (160), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the stability of the initial value problem for the delay differential equation $$\displaylines{ \frac{dv(t)}{dt}+Av(t)=B(t)v(t-\omega )+f(t),\quad t\geq 0,\cr v(t)=g(t)\quad (-\omega \leq t\leq 0) }$$ in a Banach space E with the unbounded linear operators A and B(t) with dense domains $D(A)\subseteq D(B(t))$. We establish stability estimates for the solution of this problem in fractional spaces $E_{\alpha }$. Also we obtain stability estimates in Holder norms for the solutions of the mixed problems for delay parabolic equations with Neumann condition with respect to space variables. |
---|---|
ISSN: | 1072-6691 |