Basic microstructural, mechanical, electrical and optical characterisation of BaTiAl6O12 ceramics
In progressive particle or layered composites based on a combination of BaTiO3 and Al2O3, serving as e.g. ceramic harvesters, new phases are formed during heat treatment. The dominant one is BaTiAl6O12. This study provides information about the microstructural, mechanical and optical properties of t...
Gespeichert in:
Veröffentlicht in: | Boletín de la Sociedad Española de Cerámica y Vidrio (1983) 2024-09, Vol.63 (5), p.368-376 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In progressive particle or layered composites based on a combination of BaTiO3 and Al2O3, serving as e.g. ceramic harvesters, new phases are formed during heat treatment. The dominant one is BaTiAl6O12. This study provides information about the microstructural, mechanical and optical properties of the BaTiAl6O12 ceramics. The evolution of the phases during the solid-state reaction synthesis of the BaTiAl6O12 was monitored. The fully dense samples prepared by spark plasma sintering had indentation Vickers hardness and indentation elastic modulus within ranges of 10.1–13.7GPa and 132.0–187.0GPa, depending on loading force. The three-point bending tests of the BaTiAl6O12 samples resulted in flexural strength of 129.9MPa and fracture toughness of 1.8MPam1/2. The sample showed blue broad-band emission under UV excitation due to the charge-transfer transition of the Ti4+ and defect sites. The BaTiAl6O12 evinced low permittivity (ɛ′)=16 and dielectric loss (tanδ) |
---|---|
ISSN: | 0366-3175 |
DOI: | 10.1016/j.bsecv.2024.06.002 |