Matrix product and sum rule for Macdonald polynomials

We present a new, explicit sum formula for symmetric Macdonald polynomials Pλ and show that they can be written as a trace over a product of (infinite dimensional) matrices. These matrices satisfy the Zamolodchikov– Faddeev (ZF) algebra. We construct solutions of the ZF algebra from a rank-reduced v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science 2020-04, Vol.DMTCS Proceedings, 28th...
Hauptverfasser: Cantini, Luigi, De Gier, Jan, Wheeler, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a new, explicit sum formula for symmetric Macdonald polynomials Pλ and show that they can be written as a trace over a product of (infinite dimensional) matrices. These matrices satisfy the Zamolodchikov– Faddeev (ZF) algebra. We construct solutions of the ZF algebra from a rank-reduced version of the Yang–Baxter algebra. As a corollary, we find that the normalization of the stationary measure of the multi-species asymmetric exclusion process is a Macdonald polynomial with all variables set equal to one.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6419