Microstructural and Tensile Property Differences between Ni-16Mo and ODS alloys Fabricated by the Powder Metallurgy Processes
Ni-16Mo and ODS alloys were fabricated by the powder metallurgical processes, and their microstructures and tensile properties were investigated. Ni-16Mo-7Cr and Ni-16Mo-7Cr-0.3Ti-0.35Y2O3 (in wt.%) alloys were prepared by mechanical alloying, uniaxial hot pressing, and heat treatment processes. Mic...
Gespeichert in:
Veröffentlicht in: | Archives of metallurgy and materials 2024-06, Vol.69 (No 2), p.421-424 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng ; pol |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ni-16Mo and ODS alloys were fabricated by the powder metallurgical processes, and their microstructures and tensile properties were investigated. Ni-16Mo-7Cr and Ni-16Mo-7Cr-0.3Ti-0.35Y2O3 (in wt.%) alloys were prepared by mechanical alloying, uniaxial hot pressing, and heat treatment processes. Microstructural observations of these alloys revealed that the Ti and Y2O3 additions to a Ni-16Mo alloy were significantly effective to refine the grain size and form nano-sized Y-Ti-O oxide particles. Consequently, the tensile strengths at room temperature and 700°C were considerably enhanced. This improvement of tensile properties can be mainly attributed to the formation of nano-sized oxide particles, as well as the refined grain size. It is thus concluded that Ni-16Mo alloy with Ti and Y2O3 additions would be very effective in improving the mechanical properties especially at elevated temperatures. |
---|---|
ISSN: | 2300-1909 2300-1909 |
DOI: | 10.24425/amm.2024.149758 |