A neural network for clinical decision support in orthopedic dentistry

BACKGROUND: Artificial intelligence software used in contemporary dentistry is capable of autonomously selecting prosthetic structures based on treatment conditions, establishing a diagnosis based on X-ray and intraoral jaw scanning data. A neural network in the field of machine learning is a mathem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital diagnostics 2024-07, Vol.5 (1S), p.146-148
Hauptverfasser: Ignatov, Pavel M., Oleynikov, Aleksandr A., Gus'kov, Aleksandr V., Shlykova, Alina L., Surov, Dmitrii A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:BACKGROUND: Artificial intelligence software used in contemporary dentistry is capable of autonomously selecting prosthetic structures based on treatment conditions, establishing a diagnosis based on X-ray and intraoral jaw scanning data. A neural network in the field of machine learning is a mathematical model that employs the principles of a neural network found in living organisms. It is capable of processing input signals in accordance with weight coefficients, passing them through a specific number of layers, and forming the correct answer at the output. This answer corresponds to the neuron of the output layer with the highest value of the activation function. AIM: The aim of the study was to develop a neural network for clinical decision making in orthopedic treatment planning. MATERIALS AND METHODS: A neural network was constructed using the Processing programming environment and a C-like programming language. At the stage of network training, the number of hidden layers was determined, the training coefficient was selected, and the number of training epochs was determined. The network was trained using the backpropagation of error method, which involved calculating the root-mean-square error of the network, backpropagating the signal through the neural network, and adjusting the weighting coefficients in consideration of the learning coefficient. The input layer (vector) comprised clinical conditions [1, 2]: oral cavity condition, allergoanamnesis, and various manifestations of the clinical picture (index of destruction of tooth surfaces, vitality of teeth, etc.). The dimensionality of the output layer was dependent on the number of constructions used and amounted to 19 neurons (prostheses including burette, telescopic, cover, plate; microprostheses by type such as table-top, overlay, and inlay). The output layer consisted of removable and fixed prostheses, the selection of which was based on a pre-designed algorithm. This algorithm was based on the following clinical conditions: Condition and number of teeth retained Index of destruction of the occlusal surface of masticatory teeth Black’s classification of carious cavities Parafunctions, allergic history [3, 4]. RESULTS: A neural network algorithm was developed in which a physician was required to input clinical data following an oral examination. The neural network, which facilitates clinical decision-making assistance, performs mathematical calculations in each layer, multiplying the elements
ISSN:2712-8490
2712-8962
DOI:10.17816/DD627046