Highly robust soft-rigid connections via mechanical interlocking for assembling ultra-stretchable displays
Stretchable electronic circuits can seamlessly conform to irregular and dynamic surfaces with high integration. However, current stretchable configurations typically have limited stretchability due to the lack of robust connections between soft interconnects and rigid electronics. Here, we printed h...
Gespeichert in:
Veröffentlicht in: | Npj flexible electronics 2024-08, Vol.8 (1), p.50-10, Article 50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stretchable electronic circuits can seamlessly conform to irregular and dynamic surfaces with high integration. However, current stretchable configurations typically have limited stretchability due to the lack of robust connections between soft interconnects and rigid electronics. Here, we printed highly stretchable metal–polymer conductors on thermoplastic elastomers as interconnects. We developed electronic vests with porous surfaces for rigid electronics and introduced polyester hot-melt adhesives to strengthen connections between soft interconnects and rigid electronics. After thermal bonding, the adhesive penetrates the porous surface of electronic vests, creating a mechanical interlock and providing an adhesion force of 8.34 N/cm for the connection (3× higher than conductive adhesives). Thus, rigid electronics of different sizes and different pin counts can form strong connections to soft interconnects, achieving a maximum strain tolerance of ~700% (10× higher than conductive adhesives). We achieved highly integrated ultra-stretchable displays that can withstand stretching up to 220% without dead pixels. |
---|---|
ISSN: | 2397-4621 2397-4621 |
DOI: | 10.1038/s41528-024-00337-9 |