DSSM: A Deep Neural Network with Spectrum Separable Module for Multi-Spectral Remote Sensing Image Segmentation
Over the past few years, deep learning algorithms have held immense promise for better multi-spectral (MS) optical remote sensing image (RSI) analysis. Most of the proposed models, based on convolutional neural network (CNN) and fully convolutional network (FCN), have been applied successfully on co...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2022-02, Vol.14 (4), p.818 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past few years, deep learning algorithms have held immense promise for better multi-spectral (MS) optical remote sensing image (RSI) analysis. Most of the proposed models, based on convolutional neural network (CNN) and fully convolutional network (FCN), have been applied successfully on computer vision images (CVIs). However, there is still a lack of exploration of spectra correlation in MS RSIs. In this study, a deep neural network with a spectrum separable module (DSSM) is proposed for semantic segmentation, which enables the utilization of MS characteristics of RSIs. The experimental results obtained on Zurich and Potsdam datasets prove that the spectrum-separable module (SSM) extracts more informative spectral features, and the proposed approach improves the segmentation accuracy without increasing GPU consumption. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs14040818 |