SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS
We construct infinitely many compact, smooth 4-manifolds which are homotopy equivalent to $S^{2}$ but do not admit a spine (that is, a piecewise linear embedding of $S^{2}$ that realizes the homotopy equivalence). This is the remaining case in the existence problem for codimension-2 spines in simply...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2019, Vol.7, Article e14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct infinitely many compact, smooth 4-manifolds which are homotopy equivalent to
$S^{2}$
but do not admit a spine (that is, a piecewise linear embedding of
$S^{2}$
that realizes the homotopy equivalence). This is the remaining case in the existence problem for codimension-2 spines in simply connected manifolds. The obstruction comes from the Heegaard Floer
$d$
invariants. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2019.11 |