SIMPLY CONNECTED, SPINELESS 4-MANIFOLDS

We construct infinitely many compact, smooth 4-manifolds which are homotopy equivalent to $S^{2}$ but do not admit a spine (that is, a piecewise linear embedding of $S^{2}$ that realizes the homotopy equivalence). This is the remaining case in the existence problem for codimension-2 spines in simply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forum of mathematics. Sigma 2019, Vol.7, Article e14
Hauptverfasser: LEVINE, ADAM SIMON, LIDMAN, TYE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct infinitely many compact, smooth 4-manifolds which are homotopy equivalent to $S^{2}$ but do not admit a spine (that is, a piecewise linear embedding of $S^{2}$ that realizes the homotopy equivalence). This is the remaining case in the existence problem for codimension-2 spines in simply connected manifolds. The obstruction comes from the Heegaard Floer $d$ invariants.
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2019.11