CO2 Capture and Crystallization of Ammonia Bicarbonate in a Lab-Scale Scrubber

A lab-scale bubble-column scrubber is used to capture CO2 gas and produce ammonia bicarbonate (ABC) using aqueous ammonia as an absorbent under a constant pH and temperature. The CO2 concentration is adjusted by mixing N2 and CO2 in the range of 15-60 vol % at 55 °C. The process variables are the pH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2018-01, Vol.8 (1), p.39
Hauptverfasser: Chen, Pao, Yu, Shun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A lab-scale bubble-column scrubber is used to capture CO2 gas and produce ammonia bicarbonate (ABC) using aqueous ammonia as an absorbent under a constant pH and temperature. The CO2 concentration is adjusted by mixing N2 and CO2 in the range of 15-60 vol % at 55 °C. The process variables are the pH of the solution, temperature, gas-flow rate and the concentration of gas. The effects of the process variables on the removal efficiency (E), absorption rate (RA) and overall mass-transfer coefficient (KGa) were explored. A multiple-tube mass balance model was used to determine RA and KGa, in which RA and KGa were in the range of 2.14 × 10−4-1.09 × 10−3 mol/(s•L) and 0.0136-0.5669 1/s, respectively. Results found that, RA showed an obvious increase with the increase in pH, inlet gas concentration and gas temperature, while KGa decreased with an increase in inlet gas concentration. Using linear regression, an empirical expression for KGa/E was obtained. On the other hand, ammonia bicarbonate crystals could be produced at a pH of 9.5 when the gas concentration was higher than 30% and γ (=Fg/FA, the gas-liquid molar flow rate ratio) ≥ 1.5.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst8010039