Energy Storage Performance of Na0.5Bi0.5TiO3–CaHfO3 Lead-Free Ceramics Regulated by Defect Engineering

Over the past decades, Na0.5Bi0.5TiO3 (NBT)-based ceramics have received increasing attention in energy storage applications due to their high power density and relatively large maximum polarization. However, their high remnant polarization (Pr) and low breakdown field strength are detrimental for t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ceramics 2024-09, Vol.7 (3), p.1002-1013
Hauptverfasser: Li, Zhuo, Zhang, Jing, Wang, Zixuan, Wei, Xiaotian, Long, Dingjie, Zhao, Xin, Niu, Yanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Over the past decades, Na0.5Bi0.5TiO3 (NBT)-based ceramics have received increasing attention in energy storage applications due to their high power density and relatively large maximum polarization. However, their high remnant polarization (Pr) and low breakdown field strength are detrimental for their practical applications. In this paper, a new solid solution (1−x)Na0.5Bi0.5TiO3–xCaHfO3 (x = 0.04, 0.08, 0.12, 0.16) was constructed by introducing CaHfO3 into NBT, and thus was prepared using a conventional solid-state reaction. With the addition of CaHfO3, the disorder of the structure increased, A-site vacancies formed, and thus oxygen vacancies were suppressed due to the replacement of the Na+ by Ca2+, resulting in the enhanced relaxation behavior and the reduced Pr, the refined grain, and improved breakdown strength. Furthermore, an optimal recoverable energy storage density (Wrec) of 1.2 J/cm3 was achieved in 0.92Na0.5Bi0.5TiO3–0.08CaHfO3 ceramics under the breakdown strength of 140 kV/cm, which is mainly attributed to the resultant defect of Na+ vacancy.
ISSN:2571-6131
2571-6131
DOI:10.3390/ceramics7030065