Hydrodynamics without boosts

A bstract We construct the general first-order hydrodynamic theory invariant under time translations, the Euclidean group of spatial transformations and preserving particle number, that is with symmetry group ℝ t × ISO( d ) × U(1). Such theories are important in a number of distinct situations, rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-07, Vol.2020 (7), p.1-26, Article 165
Hauptverfasser: Novak, Igor, Sonner, Julian, Withers, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We construct the general first-order hydrodynamic theory invariant under time translations, the Euclidean group of spatial transformations and preserving particle number, that is with symmetry group ℝ t × ISO( d ) × U(1). Such theories are important in a number of distinct situations, ranging from the hydrodynamics of graphene to flocking behaviour and the coarse-grained motion of self-propelled organisms. Furthermore, given the generality of this construction, we are able to deduce special cases with higher symmetry by taking the appropriate limits. In this way we write the complete first-order theory of Lifshitz-invariant hydrodynamics. Among other results we present a class of non-dissipative first order theories which preserve parity.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP07(2020)165