Systematic reviews of clinical decision tools for acute abdominal pain
To review for acute abdominal pain (AAP), the diagnostic accuracies of combining decision tools (DTs) and doctors aided by DTs compared with those of unaided doctors. Also to evaluate the impact of providing doctors with an AAP DT on patient outcomes, clinical decisions and actions, what factors are...
Gespeichert in:
Veröffentlicht in: | Health technology assessment (Winchester, England) England), 2006-11, Vol.10 (47), p.1-167 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To review for acute abdominal pain (AAP), the diagnostic accuracies of combining decision tools (DTs) and doctors aided by DTs compared with those of unaided doctors. Also to evaluate the impact of providing doctors with an AAP DT on patient outcomes, clinical decisions and actions, what factors are likely to determine the usage rates and usability of a DT and the associated costs and likely cost-effectiveness of these DTs in routine use in the UK.
Electronic databases were searched up to 1 July 2003.
Data from each eligible study were extracted. Potential sources of heterogeneity were extracted for both questions. For the accuracy review, meta-analysis was conducted. Among studies comparing diagnostic accuracies of DTs with unaided doctors, error rate ratios provided estimates of the differences between the false-negative and false-positive rates of the DT and unaided doctors' performance. Pooled error rate ratios and 95% confidence intervals (CIs) for false-negative rates and false-positive rates were computed. Metaregression was used to explore heterogeneity.
Thirty-two studies from 27 articles, all based in secondary care, were eligible for the review of DT accuracies, while two were eligible for the review of the accuracy of hospital doctors aided by DTs. Sensitivities and specificities for DTs ranged from 53 to 99% and from 30 to 99%, respectively. Those for unaided doctors ranged from 64 to 93% and from 39 to 91%, respectively. Thirteen studies reported false-positive and false-negative rates for both DTs and unaided doctors, enabling a direct comparison of their performance. In random effects meta-analyses, DTs had significantly lower false-positive rates (error rate ratio 0.62, 95% CI 0.46 to 0.83) than unaided doctors. DTs may have higher false-negative rates than unaided doctors (error rate ratio 1.34, 95% CI 0.93 to 1.93). Significant heterogeneity was present. Two studies compared the diagnostic accuracies of doctors aided by DTs to unaided doctors. In a multiarm cluster randomised controlled trial (n = 5193), the diagnostic accuracy of doctors not given access to DTs was not significantly worse (sensitivity 28.4% and specificity 96.0%) than that of three groups of aided doctors (sensitivities of 42.4-47.9%, and specificities of 95.5-96.5%, respectively). In an uncontrolled before-and-after study (n = 1484), the sensitivities and specificities of aided and unaided doctors were 95.5% and 91.5% (p = 0.24) and 78.1% and 86.4% (p < 0.001), respect |
---|---|
ISSN: | 1366-5278 2046-4924 1366-5278 |
DOI: | 10.3310/hta10470 |