Dynamic Semiempirical PEMFC Model for Prognostics and Fault Diagnosis

This article introduces a dynamic semiempirical model that predicts the degradation of a proton exchange membrane fuel cell (PEMFC) by introducing time-based terms in the model. The concentration voltage drop is calculated using a new statistical equation based on the load current and working time,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.10217-10227
Hauptverfasser: Khan, Saad Saleem, Shareef, Hussain, Kandidayeni, Mohsen, Boulon, Loic, Amine, Abbou, Abdennebi, El Hasnaoui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces a dynamic semiempirical model that predicts the degradation of a proton exchange membrane fuel cell (PEMFC) by introducing time-based terms in the model. The concentration voltage drop is calculated using a new statistical equation based on the load current and working time, whereas the ohmic and activation voltage drops are updated using time-based equations borrowed from the existing literature. Furthermore, the developed model calculates the membrane water content in the PEMFC, which indicates the membrane hydration state and indirectly diagnoses the flooding and drying faults. Moreover, the model parameters are optimized using a recently developed butterfly optimization algorithm. The model is simple and has a short runtime; therefore, it is suitable for monitoring. Voltage degradation under various loading currents was observed for long working hours. The obtained results indicate a significant degradation in PEMFC performance. Therefore, the proposed model is also useful for prognostics and fault diagnosis.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3049528