Evaluation of the corrosion and oxidation resistance of NiCoCrAlY cladding on CMSX-4 by laser cladding
This study uses laser cladding to investigate the hot corrosion and oxidation behavior of CMSX-4 claddes with NiCoCrAlY powder. High-temperature oxidation tests were conducted at 1050°c for 50, 100, 150, and 200 h on 4 samples, while 6 samples underwent hot corrosion testing at 850°c for 6 h. The in...
Gespeichert in:
Veröffentlicht in: | Journal of materials research and technology 2024-11, Vol.33, p.4875-4883 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study uses laser cladding to investigate the hot corrosion and oxidation behavior of CMSX-4 claddes with NiCoCrAlY powder. High-temperature oxidation tests were conducted at 1050°c for 50, 100, 150, and 200 h on 4 samples, while 6 samples underwent hot corrosion testing at 850°c for 6 h. The innovative application of laser cladding enables the creation of a γ′ and β interdendritic phase microstructure. High-temperature oxidation tests reveal a growth rate of 0.05 μm/h in oxide layer thickness between 50 and 200 h, accompanied by a surface weight increase rate of approximately 0.8 mg/cm2.h. The oxide layer's regeneration, continuity, and density are observed at 200 h, highlighting the innovative potential of this technique. Fracture oxidation is observed at 150 h in some TGO layer regions, but at 200 h of oxidation, the TGO layer's regeneration, continuity, and dense TGO was observed at the cladding interface. The TGO forms at 1050°c consist of Al2O3, Cr2O3, and CoO oxides, with Al2O3 as the main oxide phase. The study's findings demonstrate the ability of laser cladding to enhance the thermal protection of CMSX-4, showcasing a promising innovation in the field. |
---|---|
ISSN: | 2238-7854 |
DOI: | 10.1016/j.jmrt.2024.10.145 |