Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring

In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2016-11, Vol.16 (11), p.1947
Hauptverfasser: Alldieck, Thiemo, Bahnsen, Chris H, Moeslund, Thomas B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to enable a robust 24-h monitoring of traffic under changing environmental conditions, it is beneficial to observe the traffic scene using several sensors, preferably from different modalities. To fully benefit from multi-modal sensor output, however, one must fuse the data. This paper introduces a new approach for fusing color RGB and thermal video streams by using not only the information from the videos themselves, but also the available contextual information of a scene. The contextual information is used to judge the quality of a particular modality and guides the fusion of two parallel segmentation pipelines of the RGB and thermal video streams. The potential of the proposed context-aware fusion is demonstrated by extensive tests of quantitative and qualitative characteristics on existing and novel video datasets and benchmarked against competing approaches to multi-modal fusion.
ISSN:1424-8220
1424-8220
DOI:10.3390/s16111947