Preservation and decomposition theorems for bounded degree structures
We provide elementary algorithms for two preservation theorems for first-order sentences (FO) on the class \^ad of all finite structures of degree at most d: For each FO-sentence that is preserved under extensions (homomorphisms) on \^ad, a \^ad-equivalent existential (existential-positive) FO-sente...
Gespeichert in:
Veröffentlicht in: | Logical methods in computer science 2015-12, Vol.11, Issue 4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide elementary algorithms for two preservation theorems for
first-order sentences (FO) on the class \^ad of all finite structures of degree
at most d: For each FO-sentence that is preserved under extensions
(homomorphisms) on \^ad, a \^ad-equivalent existential (existential-positive)
FO-sentence can be constructed in 5-fold (4-fold) exponential time. This is
complemented by lower bounds showing that a 3-fold exponential blow-up of the
computed existential (existential-positive) sentence is unavoidable. Both
algorithms can be extended (while maintaining the upper and lower bounds on
their time complexity) to input first-order sentences with modulo m counting
quantifiers (FO+MODm). Furthermore, we show that for an input FO-formula, a
\^ad-equivalent Feferman-Vaught decomposition can be computed in 3-fold
exponential time. We also provide a matching lower bound. |
---|---|
ISSN: | 1860-5974 1860-5974 |
DOI: | 10.2168/LMCS-11(4:17)2015 |