Preservation and decomposition theorems for bounded degree structures

We provide elementary algorithms for two preservation theorems for first-order sentences (FO) on the class \^ad of all finite structures of degree at most d: For each FO-sentence that is preserved under extensions (homomorphisms) on \^ad, a \^ad-equivalent existential (existential-positive) FO-sente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science 2015-12, Vol.11, Issue 4
Hauptverfasser: Harwath, Frederik, Heimberg, Lucas, Schweikardt, Nicole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide elementary algorithms for two preservation theorems for first-order sentences (FO) on the class \^ad of all finite structures of degree at most d: For each FO-sentence that is preserved under extensions (homomorphisms) on \^ad, a \^ad-equivalent existential (existential-positive) FO-sentence can be constructed in 5-fold (4-fold) exponential time. This is complemented by lower bounds showing that a 3-fold exponential blow-up of the computed existential (existential-positive) sentence is unavoidable. Both algorithms can be extended (while maintaining the upper and lower bounds on their time complexity) to input first-order sentences with modulo m counting quantifiers (FO+MODm). Furthermore, we show that for an input FO-formula, a \^ad-equivalent Feferman-Vaught decomposition can be computed in 3-fold exponential time. We also provide a matching lower bound.
ISSN:1860-5974
1860-5974
DOI:10.2168/LMCS-11(4:17)2015