Autonomous Navigation System of Indoor Mobile Robots Using 2D Lidar

Significant developments have been made in the navigation of autonomous mobile robots within indoor environments; however, there still remain challenges in the face of poor map construction accuracy and suboptimal path planning, which limit the practical applications of such robots. To solve these c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-03, Vol.11 (6), p.1455
Hauptverfasser: Sun, Jian, Zhao, Jie, Hu, Xiaoyang, Gao, Hongwei, Yu, Jiahui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Significant developments have been made in the navigation of autonomous mobile robots within indoor environments; however, there still remain challenges in the face of poor map construction accuracy and suboptimal path planning, which limit the practical applications of such robots. To solve these challenges, an enhanced Rao Blackwell Particle Filter (RBPF-SLAM) algorithm, called Lidar-based RBPF-SLAM (LRBPF-SLAM), is proposed. In LRBPF, the adjacent bit poses difference data from the 2D Lidar sensor which is used to replace the odometer data in the proposed distribution function, overcoming the vulnerability of the proposed distribution function to environmental disturbances, and thus enabling more accurate pose estimation of the robot. Additionally, a probabilistic guided search-based path planning algorithm, gravitation bidirectional rapidly exploring random tree (GBI-RRT), is also proposed, which incorporates a target bias sampling to efficiently guide nodes toward the goal and reduce ineffective searches. Finally, to further improve the efficiency of navigation, a path reorganization strategy aiming at eliminating low-quality nodes and improving the path curvature of the path is proposed. To validate the effectiveness of the proposed method, the improved algorithm is integrated into a mobile robot based on a ROS system and evaluated in simulations and field experiments. The results show that LRBPF-SLAM and GBI-RRT perform superior to the existing algorithms in various indoor environments.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11061455